Creating a DIY 433 MHz ESP8266-based Home Automation bridge to switch DIP remote control outlets

A couple of years ago I built a pretty basic smart home application allowing me to control my remote controlled sockets via an Android app or a Web Extension. It’s based on the rcswitch library run on an Apache. The 433 MHz signals are sent by a FS1000A transmitter hooked up via GPIO to a Raspberry Pi. The whole setup lied on the ground in a corner of my apartment behind a curtain next to my network wall jack. Now where we have just moved to a nice new and twice as big home, I needed a solution which could be placed in the middle of all rooms to allow the rather weak 433 MHz signals to reach every receiver. Additionally, I wanted to get rid of having to maintain a full Ubuntu server, which only serves as a light switch for the most part.

Firefox WebExtension used to turn on desk lamp
Firefox WebExtension used to turn on desk lamp

Around that time, I stumbled upon the ESP8266: a low-cost WiFi microchip with full TCP/IP stack and microcontroller capability – ideally soldered on a NodeMCU or Wemos D1 for the maximum level of convenience. Arduino and Wifi: a whole new world of IoT-possibilities. Once you’ve added the board manager to your Arduino IDE, you can use those tiny boards just like an ordinary Arduino. As the Arduino WebServer library can turn a NodeMCU development board into a light-weight HTTP server and the rcswitch library is also available on Arduino, I decided to put both – NodeMCU and FS1000A – into a junction box to create a DIY 433 MHz RF WiFi bridge.

To reach the bridge you should either assign a static IP or use mDNS. Keep in mind that mDNS is not supported by all operating systems out of the box. If in doubt, use a static IP.  To make the bridge accessible from outside your home network, you need to open and forward a port on your router (port 80 by default and can be changed in line 10). It’s recommend to secure any connection made through the public internet. By the time I was writing the script, there hasn’t been a HTTPS server implementation around. However, I found HelloServerBearSSL while writing this article. It looks very promising and is definitely worth a try.

433Mhz RF WiFi Bridge Junction Box opened and closed
433 MHz RF WiFi Bridge Junction Box opened and closed

This project works with simple DIP-switch remote outlets only. It became quite hard to get the “old” DIP outlets as most producers switched to the “new” outlets, which use a button on the receivers to “learn” a signal. There is a NewRemoteSwitch library to deal with them. But as I just recently found one last triple pack in a dollar store, I am stocked until I will eventually move to Wifi controlled outlets.

Enough talk. A typical request contains the five digit system code, five digit unit code and a binary power code separated by comma. You can also concatenate multiple commands using semicolon. A sample request to switch on outlet A and switch off outlet B would look like this:


Here is the code. Further down is a download link.

DOWNLOAD: 433MHzWifiBridge Project


Using a ML8511 UV sensor and an Arduino Nano to test UV-filtering properties of sunglasses

Do cheap freebie sunglasses really block UV light or are they mostly just toys, which pose a serious health risk to your eyes? That’s the question I asked myself when coming across one of my wife’s cheesy glasses. I always warned her, but never could proof the potential risk of increased UV exposure caused by non-blocking tinted glasses. Until now…

After buying one of those cheap Arduino Nano clones (oh the irony), I started experimenting with all kind of sensors. One of them was the ML8511. This sensor detects 280 – 390 nm light most effectively. This wavelength is categorized as part of the UVB spectrum and most of the UVA spectrum. Overexposure to UVA radiation has been linked to the development of certain types of cataracts, and research suggests UVA rays may play a role in development of macular degeneration.

The setup was straight forward: I hung an UV LED torch over the sensor using my helping hand. The emitted 395 nm light is slightly out of range, but the torch has proven to be a reliable source of detectable UV light. Pointing the beam directly at the photo resistor was crucial as the amount of measurable UV light decreases rapidly on the beam’s edges. I used a sketch from Sparkfun to read the sensor’s output. The unit measure wasn’t really necessary as I was mainly interested in the relative amount of absorbed UV light. But having the Milliwatts per square Centimeter came in handy. The problem was that the script outputted -1 mW/cm² when being in an UV-free environment. The solution was unexpected: The voltage of the “supposed to be 1% accurate” 3v3 Nano output was in fact only 10% accurate and came out as being 3.61 volts. Seems like testing cheap sunglasses using even cheaper tools isn’t the best idea. However, the sketch’s output can be calibrated by adjusting the hard-coded reference variable in the script to the actual reference voltage.

All tested sunglasses absorbed a fair amount of UV light. The best pairs filtered the UV light nearly completely (meaning below a level that can be detected by an ML8511 in this particular setup and ignoring the minor UV halo around the frame due to the sensor not being fully covered by the glass). The rest ranged between letting 1 – 10% of UV irradiation to pass through – proving that all sunglasses had UV-filtering properties. Given that a good UV protection can be bought for less than 10 Euros (the best pair tested), it is probably a good idea to not use freebie sunglasses if you have a bad gut feeling. As general advice, make sure that you buy your glasses from trusted retailers (optician, pharmacy, supermarket, etc.) or let them be tested.

Seeing is believing. 😉


UV test setup with ML8511 and Arduino Nano R3
Serial monitor output of the sketch used



Reference and further reading: